

## "Science is simply the word we use to describe a method of organising our curiosity."

The programme for Y10 and 11 differs in comparison to KS3. There are4 sets in each population. X/Y1, 2, 3 and 4 classes will be taught combined science content and will see a subject specialist teacher three times a fortnight. Set 5 is the triple science group who will see their teachers on a 5,5,4 split.

There are 2 data collection points for Y10

Staff use the **Curriculum Road Map** to ensure they teach the correct topic with enough time to cover the depth and breadth of our curriculum.

| Торіс | Unit title | Key knowledge/<br>Content to learn and retain                                                                                                                                                                                                                                                                                                      | Essential skills to acquire<br>(subject & generic)                                                                                                                                                      | Anticipated<br>misconceptions                                                                                                                                                                                                                                                                                           | Links to<br>previous KS                                                                                                                                                                                                                                                    | Links to<br>future KS                                                                                                                                                                                                                                                    | Opportunity for<br>stretch for high<br>prior attainers |
|-------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| One   | Bonding    | <ol> <li>Types of Bonding</li> <li>Ionic Bonding:</li> <li>Occurs between metals<br/>and non-metals.</li> <li>Electron Transfer: Metals<br/>lose electrons to form<br/>positive ions (cations), and<br/>non-metals gain electrons<br/>to form negative ions<br/>(anions).</li> <li>Electrostatic Attraction:<br/>The oppositely charged</li> </ol> | Diagram Drawing and<br>Interpretation<br>Ionic Bonding Diagrams<br>Covalent Bonding<br>Diagrams<br>Bonding Models:<br>Comparing Structures and<br>Properties<br>Contrast Giant vs<br>Simple Structures: | All ionic compounds<br>conduct electricity in<br>solid form<br>Reality: Ionic compounds<br>do not conduct<br>electricity in solid form<br>because the ions are<br>fixed in place within the<br>lattice structure and<br>cannot move. They only<br>conduct electricity when<br>they are molten or<br>dissolved in water, | KS3: At KS3,<br>students are<br>introduced to<br>the basic<br>structure of<br>atoms,<br>including the<br>understanding<br>that atoms are<br>made up of<br>protons,<br>neutrons, and<br>electrons, and<br>the concept of<br>electronic<br>structure (i.e.,<br>how electrons | GCSE<br>Chemistry is<br>part of KS4,<br>which covers<br>key concepts<br>in chemical<br>reactions,<br>atomic<br>structure, and<br>bonding. The<br><b>bonding unit</b><br>is central to<br>understanding<br>many of the<br>topics that<br>follow,<br>including<br>chemical |                                                        |

| ions attract apple other                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     | where the ione are free to                                                                                                                                                                                                                                                                                                                                                                                                                                               | ore orrenged                                                                              | reactions                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------|--|
| forming a strong bond.                                                                                                                                                                                                                                            | Explaining and Predicting<br>Physical Properties                                                                                                                                                                                                                    | move.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | are arranged<br>in shells).<br>GCSE: At                                                   | properties of materials, and            |  |
| <b>Properties:</b> High<br>melting/boiling points,<br>conductive in molten or<br>dissolved form, soluble in<br>water, and brittle.                                                                                                                                | <ul> <li>Link properties to<br/>bonding</li> <li>Practice Explaining: For<br/>example:</li> </ul>                                                                                                                                                                   | Correction: Emphasize<br>that ionic compounds<br>conduct electricity<br>when molten or in<br>solution due to the                                                                                                                                                                                                                                                                                                                                                         | GCSE, this<br>understanding<br>is extended.<br>Students need<br>to know how               | the reactivity of different substances. |  |
| Covalent Bonding:                                                                                                                                                                                                                                                 | Why do ionic compounds have high melting points?                                                                                                                                                                                                                    | presence of free-moving<br>ions. In solid form, the<br>ions are locked into the<br>lattice and cannot move,<br>which is why ionic solids<br>are not conductive.                                                                                                                                                                                                                                                                                                          | electrons are<br>arranged in<br>energy levels,<br>how the<br>periodic table<br>relates to |                                         |  |
| Occurs between non-<br>metals.                                                                                                                                                                                                                                    | Why is graphite a good conductor of electricity?                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |                                         |  |
| <b>Electron Sharing:</b> Atoms share electrons to achieve a full outer shell.                                                                                                                                                                                     | Recognizing Exceptions                                                                                                                                                                                                                                              | Misconception:<br>Molecules with similar                                                                                                                                                                                                                                                                                                                                                                                                                                 | structure, and<br>how the                                                                 |                                         |  |
| a full outer shell.  Properties: Low melting/boiling points, non- conductive, and can be gases, liquids, or solids.  Metallic Bonding: Occurs between metal atoms.  Electron Sea Model: Electrons are delocalized, forming a "sea" of electrons that move freely. | Use of Keywords in<br>Explanations   Use accurate<br>terminology in your<br>explanations, especially<br>when describing:  Ions (cation/anion).  Bond types<br>(ionic/covalent/metallic).  Intermolecular Forces (e.g., van<br>der Waals forces, hydrogen<br>bonds). | Molecules with similar<br>structures always have<br>similar properties<br>Reality: While molecular<br>structure is important in<br>determining properties,<br>there can be differences<br>in properties even<br>among molecules with<br>similar structures. For<br>example, polar covalent<br>molecules (like H <sub>2</sub> O)<br>have different properties<br>from non-polar covalent<br>molecules (like O <sub>2</sub> ),<br>even though both may be<br>gases at room | electronic<br>configuration<br>influences an<br>atom's ability<br>to bond.                |                                         |  |
| <b>Properties:</b> Conductive<br>(both for heat and<br>electricity), malleable (can<br>be hammered into shapes),<br>ductile (can be drawn into                                                                                                                    | <b>Electrostatic Attraction:</b> For<br>ionic bonding, this term is crucial<br>when explaining the forces<br>between oppositely charged ions.                                                                                                                       | <b>Correction:</b> Teach<br>students to recognize the<br><b>intermolecular forces</b><br>(e.g., hydrogen bonds,<br>van der Waals forces)                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                         |  |

|  | <ul> <li>wires), and have high<br/>melting/boiling points.</li> <li>2. Structure and<br/>Properties of lonic<br/>Compounds</li> <li>Giant lonic Lattice<br/>Structure:</li> <li>lonic compounds form a<br/>regular, repeating pattern<br/>of ions.</li> <li>Strong Electrostatic<br/>Forces: Between positive<br/>and negative ions,<br/>requiring a lot of energy to<br/>break.</li> <li>Properties: Hard, brittle,<br/>and conduct electricity only<br/>when molten or in solution.</li> <li>3. Structure and<br/>Properties of Covalent<br/>Compounds</li> <li>Simple Molecular<br/>Structures:</li> <li>Small molecules (e.g.,<br/>H<sub>2</sub> O, CO<sub>2</sub> ).</li> <li>Weak Intermolecular<br/>Forces: These molecules<br/>have low melting and</li> </ul> | Performing Practical<br>Investigations<br>Practical Knowledge: Be able to<br>design and understand practical<br>investigations where the<br>properties of different materials<br>are tested, such as:<br>Testing the electrical<br>conductivity of substances (ionic<br>in solution, metallic, etc.).<br>Measuring melting/boiling points<br>of substances and linking the<br>results to the type of bonding and<br>structure. | that influence properties<br>like boiling/melting points.<br>For example, hydrogen<br>bonding in water leads to<br>higher boiling and melting<br>points than expected for<br>a small molecule. |  |  |
|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|  | Weak Intermolecular<br>Forces: These molecules<br>have low melting and<br>boiling points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |  |  |

| <b>Non-conductive:</b> They don't conduct electricity because they have no free electrons or ions.                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Giant Covalent<br>Structures:                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Large molecules (e.g., diamond, graphite).                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Strong Covalent Bonds:</b><br>High melting/boiling points<br>due to the strong bonds<br>between atoms.                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Examples:                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Diamond:</b> Each carbon<br>atom bonds to four others<br>in a 3D structure; very hard<br>and a good thermal<br>conductor but doesn't<br>conduct electricity. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Graphite:</b> Carbon atoms form layers that can slide past each other; conducts electricity and is used as a lubricant.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4. Properties of Metallic<br>Bonding                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Malleability and Ductility:<br>Metal atoms can slide past<br>each other without<br>breaking the bond due to<br>the delocalized electrons.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                 | <ul> <li>Non-conductive: They don't conduct electricity because they have no free electrons or ions.</li> <li>Giant Covalent Structures:</li> <li>Large molecules (e.g., diamond, graphite).</li> <li>Strong Covalent Bonds: High melting/boiling points due to the strong bonds between atoms.</li> <li>Examples:</li> <li>Diamond: Each carbon atom bonds to four others in a 3D structure; very hard and a good thermal conductor but doesn't conduct electricity.</li> <li>Graphite: Carbon atoms form layers that can slide past each other; conducts electricity and is used as a lubricant.</li> <li>4. Properties of Metallic Bonding</li> <li>Malleability and Ductility: Metal atoms can slide past each other without breaking the bond due to the delocalized electrons.</li> </ul> | Non-conductive: They<br>don't conduct electricity<br>because they have no free<br>electrons or ions.Giant Covalent<br>Structures:Large molecules (e.g.,<br>diamond, graphite).Strong Covalent Bonds:<br>High melting/boiling points<br>due to the strong bonds<br>between atoms.Examples:Diamond: Each carbon<br>atom bonds to four others<br>in a 3D structure; very hard<br>and a good thermal<br>conduct or but doesn't<br>conduct electricity.Graphite: Carbon atoms<br>form layers that can slide<br>past each other; conducts<br>electricity and is used as a<br>lubricant.4. Properties of Metallic<br>BondingMalleability and Ductility:<br>Metal atoms can slide past<br>each other without<br>breaking the bond due to<br>the delocalized electrons. | Non-conductive: They<br>don't conduct electricity<br>because they have no free<br>electrons or ions.Giant Covalent<br>Structures:Large molecules (e.g.,<br>diamond, graphite).Strong Covalent Bonds:<br>High melting/boiling points<br>due to the strong bonds<br>between atoms.Examples:Diamond: Each carbon<br>atom bonds to four others<br>in a 3D structure; very hard<br>and a good thermal<br>conductor but doesn't<br>conduct of but doesn't<br>conduct of but doesn't<br>conduct of but doesn't<br>conducts<br>electricity.Graphite: Carbon atoms<br>form layers that can slide<br>past each other; conducts<br>electricity and is used as a<br>lubricant.4. Properties of Metallic<br>BondingMetal atoms can slide past<br>each other without<br>breaking the bond due to<br>the delocalized electrons. | Non-conductive: They<br>don't conduct electricity<br>because they have no free<br>electrons or ions.Giant Covalent<br>Structures:Large molecules (e.g.,<br>diamond, graphite).Strong Covalent Bonds:<br>High melting/boiling points<br>due to the strong bonds<br>between atoms.Examples:Diamond: Each carbon<br>atom bonds to four others<br>in a 3D structure; very hard<br>and a good thermal<br>conductor but doesn't<br>conduct electricity.Graphite: Carbon atoms<br>form layers that can slide<br>past each other; conducts<br>electricity and is used as a<br>lubricant.4. Properties of Metallic<br>BondingMalleability and Ductility:<br>Metal atoms can slide past<br>each other without<br>breaking the bond due to<br>the delocalized electrons. | Non-conductive: They don't conduct electricity because they have no free electrons or ions.       Image: Conduct electricity because they have no free electrons or ions.         Giant Covalent Structures:       Large molecules (e.g., diamond, graphite).         Strong Covalent Bonds:       High mething/boiling points due to the strong bonds between atoms.         Examples:       Diamond: Each carbon atom bonds to four others in a 3D structure; very hard and a good thermal conduct between tows:         Graphite: Carbon atoms form layers that can slide past each other; conducts electricity and is used as a lubricant.       Iubricant.         4. Properties of Metallic Bonding       Malleability and Ductility:         Metal atoms can slide past each other; who the store of the eleccalized electrons.       Image: Conduct between atoms and the store of the eleccalized electrons. |

|  | <b>Electrical Conductivity:</b><br>Delocalized electrons are<br>free to move, so metals<br>can conduct electricity.                                     |  |  |  |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|  | <b>High Melting and Boiling</b><br><b>Points:</b> Strong metallic<br>bonds require a lot of<br>energy to break.                                         |  |  |  |
|  | 5. Bonding and Electrical<br>Conductivity                                                                                                               |  |  |  |
|  | <b>lonic compounds</b> do not<br>conduct electricity in solid<br>form, but they do when<br>molten or dissolved<br>because the ions are free<br>to move. |  |  |  |
|  | <b>Covalent compounds</b><br>generally do not conduct<br>electricity, except for a few<br>exceptions like graphite<br>(which has free electrons).       |  |  |  |
|  | Metallic compounds<br>conduct electricity in all<br>states (solid, liquid)<br>because of the freely<br>moving delocalized<br>electrons.                 |  |  |  |
|  | 6. Polarity in Molecules                                                                                                                                |  |  |  |
|  | <b>Polar Molecules:</b> Have<br>uneven distribution of<br>electrons (e.g., H <sub>2</sub> O). The<br>molecule has a partial<br>positive and partial     |  |  |  |

|                         |                                               | negative charge due to the<br>difference in<br>electronegativity between<br>atoms.<br>Non-Polar Molecules:<br>Have a symmetrical<br>electron distribution, such<br>as in $O_2$ or $CO_2$ .<br>7. Simple vs Giant<br>Structures<br>Simple Structures: Like<br>covalent molecules,<br>typically have low melting<br>and boiling points (e.g.,<br>H <sub>2</sub> O, CO <sub>2</sub> ).<br>Giant Structures: Include<br>giant ionic lattices (e.g.,<br>sodium chloride) or giant<br>covalent networks (e.g.,<br>diamond, graphite), with<br>high melting and boiling<br>points due to strong bonds<br>between atoms. |                                                                                |                                                           |                                         |                                           |                |  |
|-------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|-------------------------------------------|----------------|--|
| SMSC<br>&               | British values                                | in science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |                                                           |                                         |                                           |                |  |
| British<br>Values       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |                                                           |                                         |                                           |                |  |
| Cultura<br>I<br>Capital |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |                                                           |                                         |                                           |                |  |
| Career<br>Link          | https://www.b<br>Science.pdf,<br>More informa | bbc.co.uk/bitesize/tags/zjb8f4j/j<br>https://www.pearson.com/uk/e<br>tion <u>here</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | obs-that-use-science/1, https://www.b<br>ducators/schools/subject-area/science | pradfordacademy.co.uk/wp-c<br>e/why-science-matters/your- | ontent/uploads/20<br>future-in-stem-a-z | <u>19/10/CEIAG-in-th</u><br>. <u>html</u> | ne-Curriculum- |  |

| Тwo               | Quantitativ<br>e<br>Chemistry                                                                                                                                                                                                                                                                                           | Mass, Mr and Moles<br>Concentration of Solution<br>(HT Only) Calculating<br>reaction masses<br>Balancing Equations using<br>moles<br>% Yield and Atom<br>Economy | <ul> <li>Changing the subject of<br/>an equation</li> <li>Calculating percentage</li> <li>Using ratios</li> <li>Interpreting data<br/>presented in both<br/>graphical and tabular<br/>form.</li> <li>Using laboratory<br/>equipment and glassware</li> <li>Recording accurate data</li> <li>Calculating a mean</li> <li>Identifying anomalous<br/>and concordant results.</li> <li>Converting units</li> </ul> | The difference between<br>g/dm and mol/dm<br>Students often struggle to<br>identify when they need<br>to use molar coefficients<br>in a calculation and when<br>they don't<br>Calculating the Mr of of<br>diatomic molecules,<br>particularly in reaction<br>mass calculations | At KS3<br>students have<br>studied the<br>mechanics of<br>chemical<br>reactions and<br>have also<br>been<br>introduced to<br>the idea of<br>conservation<br>of mass and<br>balanced<br>equations.<br>Students have<br>also studied<br>neutralisation<br>reactions<br>which builds<br>directly into<br>titration | Quantitative<br>chemistry<br>forms the<br>basis of much<br>of the work<br>done during<br>physical<br>chemistry<br>during A-Level. | Higher prior<br>attainments can<br>be challenged to<br>work through<br>multi-step<br>problems<br>involving<br>different<br>equations |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SMSC              | British values                                                                                                                                                                                                                                                                                                          | s in science                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                      |  |  |
| British<br>Values | Mathematica                                                                                                                                                                                                                                                                                                             | I problems can be put into real                                                                                                                                  | I world contexts to explore a variety of                                                                                                                                                                                                                                                                                                                                                                       | concepts and scenarios                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                      |  |  |
| Cultura<br>I      | Mathematica                                                                                                                                                                                                                                                                                                             | I problems can be put into real                                                                                                                                  | I world contexts to explore a variety of                                                                                                                                                                                                                                                                                                                                                                       | concepts and scenarios                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                      |  |  |
| Capital           |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                      |  |  |
| Career<br>Link    | https://www.bbc.co.uk/bitesize/tags/zjb8f4j/jobs-that-use-science/1, https://www.bradfordacademy.co.uk/wp-content/uploads/2019/10/CEIAG-in-the-Curriculum-<br>Science.pdf, https://www.pearson.com/uk/educators/schools/subject-area/science/why-science-matters/your-future-in-stem-a-z.html<br>More information here. |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                      |  |  |
|                   | As the centra                                                                                                                                                                                                                                                                                                           | al science, Chemistry opens do                                                                                                                                   | pors to a range of STEM Field careers                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                      |  |  |
|                   |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                      |  |  |

| Three                   | Chemical<br>changes                                                            | Reactivity of metals<br>reactions with acids<br>Electrolysis          | Experimenting with chemical<br>reactions in a systematic way and<br>organising their results logically<br>Mixing of reagents to explore<br>chemical changes and/or<br>products.<br>investigate pH changes when a<br>strong acid neutralises a strong<br>alkali.<br>Measure the pH of different acids<br>at different concentrations. (HT<br>only)<br>Make order of magnitude<br>calculations. (HT only) | Physical vs chemical<br>changes.<br>Acids can burn and eat<br>material away<br>Neutralisation means an<br>acid breaking down<br>A base/alkali inhibits the<br>burning properties of an<br>acid | At KS3<br>students have<br>studied the<br>mechanics of<br>chemical<br>reactions<br>Students have<br>also studied<br>neutralisation<br>reactions<br>which builds<br>directly into<br>titration | Chemical<br>changes links<br>to the 3.1.12<br>Acids and<br>bases (A-level<br>only) topic in<br>KS5. | Explaining how<br>concentration<br>and strength are<br>linked. |  |  |
|-------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| SMSC                    | British values                                                                 | s in science                                                          |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                     |                                                                |  |  |
| British<br>Values       | Students follo<br>Discussions                                                  | owing laboratory rules for the s<br>on how certain developments l     | afety of all have affected moments in life.                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                     |                                                                |  |  |
| Cultura<br>I<br>Capital | Neutralisatio<br>Uses of indic<br>Chemical rea                                 | n reactions and how they are u<br>ators.<br>actions in everyday life. | iseful in everyday life.                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                     |                                                                |  |  |
| Career<br>Link          | https://www.l                                                                  | bbc.co.uk/bitesize/tags/zjb8f4j/                                      | jobs-that-use-science/1, https://www.t                                                                                                                                                                                                                                                                                                                                                                  | pradfordacademy.co.uk/wp-c                                                                                                                                                                     | ontent/uploads/20<br>future-in-stem-a-z                                                                                                                                                       | 19/10/CEIAG-in-th                                                                                   | ne-Curriculum-                                                 |  |  |
|                         | More informa                                                                   | ation <u>here</u> .                                                   |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                     |                                                                |  |  |
|                         | As the central science, Chemistry opens doors to a range of STEM Field careers |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                     |                                                                |  |  |
|                         |                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                     |                                                                |  |  |
| Four                    | Rates of reaction                                                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                     |                                                                |  |  |
| SMSC<br>&<br>British    | British values                                                                 | s in science<br>orders and issues around famil                        | y planning                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                                                     |                                                                |  |  |

| Values                   |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                 |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Cultura<br>I             | Charles Darv                                                                                 | vin and the voyage of the beag                                                                                                                                                                                                                                                                                                                                                        | gle                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                 |  |  |  |
| Capital                  | Historical del                                                                               | bate around evolution                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                 |  |  |  |
| Career<br>Link           | https://www.k<br>Science.pdf,<br>More informa<br>Medical rese<br>Family plann<br>Genealogist | https://www.bbc.co.uk/bitesize/tags/zjb8f4j/jobs-that-use-science/1, https://www.bradfordacademy.co.uk/wp-content/uploads/2019/10/CEIAG-in-the-Curriculum-<br>Science.pdf, https://www.pearson.com/uk/educators/schools/subject-area/science/why-science-matters/your-future-in-stem-a-z.html<br>More information here.<br>Medical research<br>Family planning adviser<br>Genealogist |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                 |  |  |  |
|                          |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                                                                 |  |  |  |
| Five -<br>TRIPLE<br>ONLY | Atmospheri<br>c<br>Chemistry                                                                 | The composition of the<br>modern atmosphere and<br>how this has changed from<br>the formation of the Earth<br>Human impact on the<br>atmosphere, including<br>greenhouse gases, climate<br>change and global<br>warming.<br>The impact of major<br>atmospheric pollutants on<br>human health and the<br>environment                                                                   | Use of timelines<br>Extended Writing<br>Reading for comprehension<br>Evaluating the accuracy of data<br>Using data to make predictions<br>about the outcome of experiments<br>Interpreting data presented in<br>tabular or graphical form | Many students believe<br>that oxygen is the most<br>plentiful gas in the<br>atmosphere, rather than<br>Nitrogen.<br>Many students<br>overestimate the<br>concentration of carbon<br>dioxide in the atmosphere<br>Many students confuse<br>global warming with<br>climate change | In KS3<br>students<br>studied the<br>atmosphere<br>and discussed<br>the impact of<br>human activity<br>on the climate.<br>This unit builds<br>on this by<br>introducing a<br>more analytical<br>and<br>quantitative<br>approach to<br>exploring<br>human impact<br>on the<br>atmosphere<br>and<br>environment | At A-Level,<br>students will<br>study the<br>impact of<br>CFCs and the<br>mechanism by<br>which they<br>have<br>contributed to<br>loss of ozone. | Students may be<br>asked to<br>compare<br>interventions<br>based on<br>compromise<br>between their<br>environmental<br>and economic<br>impacts. |  |  |  |
| SMSC                     | British values                                                                               | <u>s in science</u>                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                  | -                                                                                                                                               |  |  |  |

| &<br>British<br>Values  | The effects of climate change, how every day actions contribute to climate change and what interventions can be put in place to prevent climate catastrophe                                                                                                                                                                                                                               |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cultura<br>I<br>Capital | The effects of climate change, how every day actions contribute to climate change and what interventions can be put in place to prevent climate catastrophe                                                                                                                                                                                                                               |
| Career<br>Link          | https://www.bbc.co.uk/bitesize/tags/zjb8f4j/jobs-that-use-science/1, https://www.bradfordacademy.co.uk/wp-content/uploads/2019/10/CEIAG-in-the-Curriculum-<br>Science.pdf, https://www.pearson.com/uk/educators/schools/subject-area/science/why-science-matters/your-future-in-stem-a-z.html<br>More information here.<br>Climate scientist<br>Environmental campaigner<br>Meteorologist |

| Sic -<br>TRIPLE<br>ONLY | Chemical<br>Analysis | Pure and impure<br>substances<br>Chromatography<br>Gas Testing<br>(Triple Only) Flame<br>testing, ion testing<br>and spectroscopy | Following written<br>methods and flow<br>charts<br>Interpreting<br>chromatograms and<br>other experimental<br>results<br>Writing scientific<br>methods<br>Measuring and<br>recording accurate<br>results<br>Safe use of laboratory<br>equipment and<br>glassware.<br>Presenting and | Students often<br>confuse the results of<br>the various ion tests.<br>Students often<br>describe spectroscopy<br>as being more<br>"accurate" or<br>"Reliable" as opposed<br>to more "Sensitive" or<br>"Precise" | Students have studied<br>the idea of pure and<br>impure substances,<br>mixtures vs<br>compounds and<br>separation techniques<br>at KS3. This unit<br>extends this by<br>introducing deeper<br>analysis - not just<br>separating mixtures<br>but identifying their<br>components. | Organic Analysis is<br>studied in further<br>depth at A-Level,<br>where students will<br>look at more complex<br>spectroscopic<br>methods, such as IR<br>and MS spectroscopy. | Students could be<br>presented with<br>complex mixtures or a<br>number of different<br>solutions and<br>challenged to produce<br>viable methods of<br>identification. |
|-------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|                                |                                                                                                                                                                                                                                                                                                                         |                                                                                          | interpreting data in both tabular and graphical form. |  |  |  |  |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|
| SMSC<br>&<br>British<br>Values | British values<br>Safe working                                                                                                                                                                                                                                                                                          | British values in science<br>Safe working in the lab, and respect for others workspaces. |                                                       |  |  |  |  |  |  |
| Cultura<br>I<br>Capital        | The use of spectroscopic methods in real life applications, such as quality assurance and forensic investigation                                                                                                                                                                                                        |                                                                                          |                                                       |  |  |  |  |  |  |
| Career<br>Link                 | https://www.bbc.co.uk/bitesize/tags/zjb8f4j/jobs-that-use-science/1, https://www.bradfordacademy.co.uk/wp-content/uploads/2019/10/CEIAG-in-the-Curriculum-<br>Science.pdf, https://www.pearson.com/uk/educators/schools/subject-area/science/why-science-matters/your-future-in-stem-a-z.html<br>More information here. |                                                                                          |                                                       |  |  |  |  |  |  |
|                                | As the central science, Chemistry opens doors to a range of STEM Field careers                                                                                                                                                                                                                                          |                                                                                          |                                                       |  |  |  |  |  |  |

## Six Revision and preparation for GCSE exams Revisit to subject knowledge from across the course & use of PLC to ensure that students have a good grasp of all aspects of the specification Use of retrieval quizzes and activities to identify gaps in SK and misconceptions Support students in developing summary notes, flash cards etc to aid retrieval of key facts Ensure that students have the necessary skills for effective revision Focus on past exam questions and papers – command words and paplication of knowledge Practice the application of knowledge that draws upon the practical aspects of the course Timed completion of questions to support with pace through the exam paper SLOP style activities to ensure that all are prepared for the aspects of maths that will be present on the exam papers